Python

(FAYTCC-PYTHON.AJD1)
Lessons
Lab
TestPrep
Get A Free Trial

Skills You’ll Get

1

Introduction

  • About the Course
  • Learning Objectives
  • Audience
  • Approach
  • Minimum Hardware Requirements
  • Software Requirements
  • Conventions
  • Installation
2

Introducing Python

  • Introduction
  • Working with the Python Interactive Shell
  • Writing and Running Simple Scripts
  • Variables
  • User Input, Comments, and Indentations
  • Summary
3

Data Types

  • Introduction
  • Numerical Data
  • Strings
  • Lists
  • Booleans
  • Summary
4

Control Statements

  • Introduction
  • Control Statements
  • The if Statement
  • The while Statement
  • while Versus if
  • Loops
  • The for Loop
  • The range Function
  • Nesting Loops
  • Breaking Out of Loops
  • Summary
5

Functions

  • Introduction
  • Built-In Functions
  • User-Defined Functions
  • Function Arguments
  • Anonymous Functions
  • Summary
6

Lists and Tuples

  • Introduction
  • List Syntax
  • List Methods
  • List Comprehensions
  • Tuple Syntax
  • Accessing Tuple Elements
  • Accessing Tuple Elements
  • Tuple Methods
  • Summary
7

Dictionaries and Sets

  • Introduction
  • Working with Dictionaries
  • Additional Dictionary Attributes
  • Ordered Dictionaries
  • The Basics of Sets
  • Set Operations
  • Frozen Sets
  • Summary
8

Object-Oriented Programming

  • Introduction
  • A First Look at OOP
  • OOP in Python
  • Methods in a Class
  • Class Versus Instance Attributes
  • Class Versus Instance Methods
  • Class Inheritance
  • Multiple Inheritance
  • Summary
9

Modules, Packages, and File Operations

  • Introduction
  • Defining Modules
  • Imports and Import Statements
  • Modules and Packages
  • File Operations
  • The file Object
  • Reading and Writing to Files
  • Handling Structured Data
  • Summary
10

Error Handling

  • Introduction
  • Built-In Exceptions
  • Handling Errors and Exceptions
  • Custom Exceptions
  • Summary
A

Appendix: PCAP Exam Objective

B

Appendix: PCEP-30-01 Exam Objective

13

Introduction 

  • About the Course
14

Vital Python – Math, Strings, Conditionals, and Loops

  • Introduction
  • Vital Python
  • Numbers: Operations, Types, and Variables
  • Python as a Calculator
  • Strings: Concatenation, Methods, and input()
  • String Interpolation
  • String Indexing and Slicing
  • Slicing
  • Booleans and Conditionals
  • Loops
  • Summary
15

Python Structures

  • Introduction
  • The Power of Lists
  • Matrix Operations
  • List Methods
  • Dictionary Keys and Values
  • Dictionary Methods
  • Tuples
  • A Survey of Sets
  • Choosing Types
  • Summary
16

Executing Python – Programs, Algorithms, and Functions

  • Introduction
  • Python Scripts and Modules
  • Python Algorithms
  • Basic Functions
  • Iterative Functions
  • Recursive Functions
  • Dynamic Programming
  • Helper Functions
  • Variable Scope
  • Lambda Functions
  • Summary
17

Extending Python, Files, Errors, and Graphs

  • Introduction
  • Reading Files
  • Writing Files
  • Preparing for Debugging (Defensive Code)
  • Plotting Techniques
  • The Don'ts of Plotting Graphs
  • Summary
18

Constructing Python – Classes and Methods

  • Introduction
  • Classes and Objects
  • Defining Classes
  • The __init__ method
  • Methods
  • Properties
  • Inheritance
  • Summary
19

The Standard Library

  • Introduction
  • The Importance of the Standard Library
  • Dates and Times
  • Interacting with the OS
  • Using the subprocess Module
  • Logging
  • Collections
  • Functools
  • Summary
20

Becoming Pythonic

  • Introduction
  • Using List Comprehensions
  • Set and Dictionary Comprehensions
  • Default Dictionary
  • Iterators
  • Itertools
  • Generators
  • Regular Expressions
  • Summary
21

Software Development

  • Introduction
  • Debugging
  • Automated Testing
  • Creating a PIP Package
  • Creating Documentation the Easy Way
  • Source Management
  • Summary
22

Practical Python – Advanced Topics

  • Introduction
  • Developing Collaboratively
  • Dependency Management
  • Deploying Code into Production
  • Multiprocessing
  • Parsing Command-Line Arguments in Scripts
  • Performance and Profiling
  • Profiling
  • Summary
23

Data Analytics with pandas and NumPy

  • Introduction
  • NumPy and Basic Stats
  • Matrices
  • The pandas Library
  • Data
  • Null Values
  • Visual Analysis
  • Summary
24

Machine Learning

  • Introduction
  • Introduction to Linear Regression
  • Cross-Validation
  • Regularization: Ridge and Lasso
  • K-Nearest Neighbors, Decision Trees, and Random Forests
  • Classification Models
  • Boosting Methods
  • Summary
25

Introduction

  • Course Description
  • How To Use This Course
  • Course-Specific Technical Requirements
26

Setting Up a Python Data Science Environment

  • Topic A: Select Python Data Science Tools
  • Topic B: Install Python Using Anaconda
  • Topic C: Set Up an Environment Using Jupyter Notebook
  • Summary
27

Managing and Analyzing Data with NumPy

  • Topic A: Create NumPy Arrays
  • Topic B: Load and Save NumPy Data
  • Topic C: Analyze Data in NumPy Arrays
  • Summary
28

Transforming Data with NumPy

  • Topic A: Manipulate Data in NumPy Arrays
  • Topic B: Modify Data in NumPy Arrays
  • Summary
29

Managing and Analyzing Data with pandas

  • Topic A: Create Series and DataFrames
  • Topic B: Load and Save pandas Data
  • Topic C: Analyze Data in DataFrames
  • Topic D: Slice and Filter Data in DataFrames
  • Summary
30

Transforming and Visualizing Data with pandas

  • Topic A: Manipulate Data in DataFrames
  • Topic B: Modify Data in DataFrames
  • Topic C: Plot DataFrame Data
  • Summary
31

Visualizing Data with Matplotlib and Seaborn

  • Topic A: Create and Save Simple Line Plots
  • Topic B: Create Subplots
  • Topic C: Create Common Types of Plots
  • Topic D: Format Plots
  • Topic E: Streamline Plotting with Seaborn
  • Summary
C

Appendix A: Scraping Web Data Using Beautiful Soup

  • Topic A: Scrape Web Pages

1

Introducing Python

  • Using the print Method
  • Displaying a Statement Multiple Times
  • Using Variable Assignment
  • Using Variables and Assigning Statements
  • Displaying the Multiplication Table
2

Data Types

  • Using Arithmetic Operators
  • Performing String Slicing Tasks
  • Working with Strings
  • Manipulating Strings Using the strip Method
  • Working with Lists
  • Using Boolean Operators
3

Control Statements

  • Working with the if Statement
  • Working with the while Statement
  • Using the for Loop and the range Function
  • Using Nested Loops
4

Functions

  • Working with Function Arguments
  • Using Lambda Functions
5

Lists and Tuples

  • Using List Methods
  • Using Tuple Methods
6

Dictionaries and Sets

  • Arranging and Presenting Data Using Dictionaries
  • Combining Dictionaries
  • Creating Intersections of Elements in a Collection
7

Object-Oriented Programming

  • Defining Methods in a Class
  • Creating Class Attributes
  • Creating Class Methods and Using Information Hiding
  • Overriding Methods
  • Implementing Multiple Inheritance
8

Modules, Packages, and File Operations

  • Using Resources in a Module
9

Error Handling

  • Identifying Error Scenarios
  • Handling Errors
  • Creating the Custom Exception Class
10

Setting Up a Python Data Science Environment

  • Setting Up a Jupyter Notebook Environment
11

Managing and Analyzing Data with NumPy

  • Creating a NumPy Array
  • Using the NumPy Array Attributes
  • Loading and Saving NumPy Data
  • Analyzing Data in a NumPy Array
  • Using Fancy Indexing
  • Using the NumPy Statistical Summary Functions
12

Transforming Data with NumPy

  • Manipulating Data in a NumPy Array
  • Using the reshape Function
  • Using the ravel and flip Functions
  • Using the transpose and concatenate Functions
  • Using the sort and argrsort Functions
  • Using the insert and delete Functions
  • Using the Arithmetic Functions and Operators
  • Using the Comparison Functions and Operators
  • Modifying Data in NumPy Arrays
13

Managing and Analyzing Data with pandas

  • Creating Series and DataFrames
  • Using the Series and DataFrame Attributes
  • Loading and Saving DataFrame Data
  • Analyzing Data in a DataFrame
  • Slicing and Filtering Data in a DataFrame
14

Transforming and Visualizing Data with pandas

  • Manipulating Data in a DataFrame
  • Modifying Data in a DataFrame
  • Using the DataFrame Arithmetic Functions and Operators
  • Creating a Scatter Plot
15

Visualizing Data with Matplotlib and Seaborn

  • Creating a Line Plot
  • Creating Subplots
  • Creating Box Plots
  • Creating a 3-D Scatter Plot
  • Creating a Histogram
  • Formatting Plots
  • Creating a JointGrid
  • Creating a Linear Regression Plot

Related Courses

All Courses
scroll to top